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Abstract:

There are many multi-stage optimization

problems that are not easily solved through

any known direct method when the stages are

coupled. For instance, we have investigated

the problem of planning a vehicle's control

sequence to negotiate obstacles and reach a

goal in minimum time. The vehicle has a

known mass, and the controlling forces have

finite limits. We have developed a technique

that finds admissible control trajectories which
tend to minimize the vehicle's transit time

through the obstacle field. The immediate

application is that of a space robot which must

rapidly traverse around 2-or-3 dimensional

structures via application of a rotating thruster

or non-rotating on-off thrusters. An air

bearing floor test-bed for such vehicles is

located at the Marshal Space Flight Center in
Huntsville Alabama.

However, it appears that the developed

method is applicable to a general set of

optimization problems in which the cost
function and the multi-dimensional multi-state

system can be any non-linear functions, which

are continuous in the operating regions.

Other applications include the planning of

optimal navigation pathways through a

traversability graph; The planning of control

input for under-water maneuvering vehicles

which have complex control state-space

relationships; The planning of control

sequences for milling and manufacturing

robots; The planning of control and

trajectories for automated delivery vehicles;

And the optimization of control for automotive

racing vehicles and athletic training in slalom

sports.

Introduction:

Many optimization techniques have been

developed such as: Bolza, Mayer, Lagrange,

Green, Gradient Methods, Dynamic

Programming, and Optimum Spacing of

Corrective Thrusts[2]. Other methods that are

based upon searching tend to be less efficient,

exhausting much time searching the entire

space at a given resolution level.

Techniques that are based on direct

methods tend to be limited to specific types of

cost functions and systems. In such methods,

the system must be expressible as a single

function. For example, a discrete maximum

principle method (from Pontryagin), is based

upon Calculus of Variations. The problem is

formulated as finding the control function,

u[k], which minimizes J=Sum of F[x,u,k] with

constraint x(k+l) - f[x,u,k]. Where x are the

system states, f is the system transition

function, and F is the cost function. The

solution is found by first, defining the costate

vector, p(k), and the Hamiltonian,

H[x,u,p(k+l),k], as:

H = F[x,u,k] - <p(k+l, f[x,u,k]>

Let p and x take variations, lambda. Then

form 2*n first order difference equations /

canonical state equations. Solve:

partial dH

............ _ 0,

partial dU

for optimum (minimum) relative to the

boundary conditions. Then apply the

condition of transversality to find u.
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Background:

The purpose of our algorithm is to

determine and plan an ideal path. Since it is a

plan, unpredictable perturbation forces, and
sensor, actuator errors cannot be considered. It

is assumed that a final design must incorporate

additional methods such as closed-loop

feedback, periodic re-evaluation, or variable

structure control methods in conjunction with

this path-planning method. Planning is

necessary since, none of the feedback methods

could be used without a basic path plan such as

that developed b_, fhls technique. In the

absence of general rules for dix_tly deriving

an optimal control sequence, given arbitrary

constraints such as vehicle dynamics, control

limitations, and an arbitrary obstacle

environment, a basic strategy is to search the

control space for a control sequence which

avoids obstacles while minimizing the time to

reach the goal. We call such a control space

search an "input-space" search.
An alternate method would be to search

the "output-" space for an optimal trajectory,

and then to find a corresponding admissible

control sequence that produces it. However,

there are many trajectories Which cannot be

achieved through any admissible control

sequence due to I[mitatlons in vehicle

dynamics. Namely, th-ese ii_tations are:

vehicle mass and the appliable acceleration,

force, or power. The set of all trajectories

includes those which are produced from

admissible control, plus those which cannot
be.

Likewise, the input-space corresponds to

all trajectories that can be traversed, plus those
which cannot be due to obstacles or other

constraints. Consequently, it is not obvious

which of the two candidate search spaces is
more efficient to search. The decision then

rests upon ease of implementation or

computation.

Searching the input space requires posing

various permutations of admissible control

sequences and testing their outcomes for

conformance to the output constraints, which
in our case would be obstacle collisions. The

output trajectory due to a control input

sequence is easily computable as long as we
have a system equation. Since the output

trajectory is a function of the control input

(and not vice-versa), this is a one-to-one

mapping. In other words, there is exactly one

output trajectory corresponding to a given

control input sequence.

Searching the output-space requires

posing various valid output trajectories, and

working backwards for each one to derive an

admissible control "input sequence that would

produce it, if any exist. The inverse to the

system eXiiaafi0n is required to compute the

input sequence from the output trajectory.

Therefore, since it appears more direct and

tends to be more well-formed (since inversion

is avoided), we have chosen to search in the

control input space.

In general, the control space for this type

of problem consists of a vector function, C(t),

which is continuous in time. At any time

instance, t, C(t) represents the control force

vector on the vehicle. That is, it represents a

force magnitude and direction (F, theta). Both

quantities may change abruptly at any time.

The /nagnitude is usualiy i_ted to some

adfialssib_ range, Fmax, so it is continuous

from 0 to Fmax, while the direction may vary

continuously from 0 to 360-degrees.

The continuous quantifies (F, theta) can be

quantized into discrete quanta. As the quanta

grow infinitesimally small, the quantization

approaches the continuous function. Similarly,

the functions can be discretized in time, so as

to be approximated by discrete time series.

Again, as the sample period grows

infinitesimally small, the discrete

approximation approaches the continuous

function in time. Therefore, through
quantization and discretization, the time/value

continuous system can be approximated with

arbitrary precision.

Discretization in time, and quantization of
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valuesof the control-input, allows a systematic

search to bc conducted over the possible

sequences of control-input values. The control

string, C(t), is analogous to a gene. We search

for improved solutions by inserting random

mutations into the control gene, and then

evaluating the outcome as a whole. Mutations

with favorable outcomes are retained, and

further mutations are applied and evaluated

recursively. This technique therefore belongs

to the class of genetic algorithms.

As we attempt to approximate the

continuous system with smaller force and time

quanta (higher resolution), the number of

terms, -and the values they may take-, grows
infinite. Therefore, the search must be

conducted at reduced resolution.

The best solution from a reduced

resolution search will generally not be

equivalent to the best solution of a search

conducted at a higher, or infinite, resolution.

Since, the higher resolution search space

includes the lower resolution search space, if

their best solutions differ, then the higher

resolution solution must be better. Therefore,

to approach a more optimal solution, we wish

to conduct a search at the highest practical
resolution.

It is desired to obtain the best solution that

can be found in a given practical amount of

computation time. A high resolution search

consumes much computation time searching

the entire space at high resolution. The

maximum resolution is thus limited by the

available compute time.

The required compute time is related to

the number of permutations that must be

examined in the search space. The number of

potential permutations is:

(M'D) N

Where M is the number of F-force magnitude
quanta, D is the number of them-direction

quanta, and N is number of time samples or

potential switching-points from the origin to

the goal. From this, we can see that the

computation time is exponentially related to

the resolution. For instance, a doubling in

force (ma_}itude or direction) resolution

implies a 2" increase. A doubling in time

resolution implies a squared increase in

compute time. Therefore, minimizing

resolution is computationally expedient.

Note that we use the term "potential"
permutations above. The actual number tends

to be less-than the potential number since

many potential permutations are obviated by

spatial boundaries and obstacles in a depth-

first search. Therefore, this is an upper-bound.

There is a time-space duality between the

resolution of the switching times, and the

resolution of the force magnitude/direction

quantities. For instance, ff the force resolution

is halved while the time resolution is doubled,

equivalent control trajectories can still be

maintained by time averaging the now more

rapid, but less precise force-switching
quantizes.

In 2-D space, the minimum force

resolution, without loosing any degrees of

freedom in movement directions, is one

magnitude quantity and four direction

quantities, or two magnitude quantifies and

two direction quantities. In either case, the

M*D product equals four (4). In the former

case the magnitude would correspond to the
maximum admissible force, and the directions

could be 0, 90, 180, and 360-degrees. In the

later case the magnitudes would correspond to

(+) and (-) the maximum admissible force, and

the directions could be 0 and 90-degrees.

(Clearly this is just two ways of saying the

same thing.)

We now describe an iterative refinement

based method to achieve a solution in less time

than would otherwise be required by

performing a single search at the equivalent

resolution level to produce a solution of

similar quality. The strategy is to perform

a course resolution search over all the control

input space to determine the most promising
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region. Next a higher resolution search is

performed only within this region to find a

more optimal sub-region. Then continually

higher resolution searches arc recursivdy

performed within the sub-region. The search

complexity is roughly equal at each level.

For computational simplicity, the

minimum force resolution of four (4) force

magnitude/directions is used throughout the

process, with increasing switch-point time
resolutions. Time-resolution may later be

traded for increased force-resolution, as a final

integration step, once sufficient resolution has
been obtained.

Construct Initial Coarse-Resolution Path:

The initial number of switch-points for

the initial coarse resolution search depends

upon the complexity of the feature space, the

available computation time, and the search rate

of the computer. Since a direct method for

determining the initial number of switch-

points is unknown, a variety of techniques can
be used such as, experience, trial and error, and

heuristics which take into account features of

the obstacle space. For instance, fewer switch-

points may be placed in areas which are far

from obstacles and therefore require fewer

course corrections.

The number of initial switch-points can

impact the quality of the final solution, since
the coarse resolution search determines the

region of focused attention. Therefore, care

should be taken to investigate the larger space

before delving into a fine resolution search of a

selected sub-region.

In general, the initial search should use the

largest number of points possible to complete

the search computation in the allotted time.

This is estimated by measuring the rate at

which switch-point nodes axe processed by the

computer. The maximum number of nodes to

be processed is given by the (M'D) N = 4 N

formula. It is recommended that at least half

of the remaining computation time be devoted

to the remaining resolution levels. For

instance, a Sun Spare-10 processes about

80,000-nodes/second. If the total allowable

computation time is 60-seconds, then allowing
30-seconds for the initial search would imply:

N = Log4(T*R) =Log4(30*80,000) = 10-nodes

Actually, due to obstacles reducing the

number of available paths, the search can be

completed in much less time, which allows

more time for refinement. Consequently, this

estimate for N forms a conservative upper

bound.

In general, there is no way of knowing

what the distribution of the N switch points in

time should be, nor of whether a solution can

be found using N switch points. Therefore, it
is useful to have an estimated upper bound on

the solution cost. Then, the points can be

distributed along this cost. This distribution
and cost bound can be obtained through

experience, trial and error, or a heuristic

method.

For our navigation application, we

determined the initial switch point set-size and

distribution by the applying the following 2-

step process:

I.Perform a Dijkstra search on the

obstacle vertices, where cost is

taken to be the Euclidean distance

between vertices. This finds the

minimum distance path from the origin

to the goal, and it ignores the vehicle

dynamics.

2.For each segment inthe path from (I),

compute the optimal switchingtimes to

move the vehiclealong each segment

ensuring the vehiclevelocityiszero

ateach scgrncnt'send-points.

This dccouples the stagesof the

problem intoa seriesof simple linear

re-positioningsub-problems.

The result of this process is an initial control

string, C(t), and a fixed upper bound cost.
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The resulting initial pathway may not coincide

with the optimal dynamic path, but it is usually

a good one that is close. If it is close enough,

then the refinement process can find the

optimal path.

In the general case, ff an intuitive heuristic

approach is unknown for a given state-space,

but a reasonable upper-bound cost can be

estimated, then an initial control string can

often be found by concatenating and

evaluating N variable switching points that are

distributed uniformly along the cost axis. If no
solution can be found within the estimated

upper bound cost with N-points, than either a

higher resolution search (>N) or a higher

upper-bound cost is required. If it is the

former, an increase in N would exceed the

allowable computation time, thus the problem

would be partitioned into sub-problems which

would be solved similarly but separately. The
separate solutions would be combined to form

the initial control string which would then be

refined as described below.

Genetic Iterative Refinement

or Increasing the time-resolution:

Once an initial trajectory is found,

attempts are made to refine the switching

points by inserting new variable switching

points between the existing switching points.
The switching point string, C(T), is considered

to be a control-string or list of force-directions

with time-deltas between them. A new switch-

point B can be inserted between two elements

A and C by relating their delta times as
follows:

Tc - Ta = (Tc - Tb) + (Tb- Ta).

The time relationships of the remaining

elements in the string remain unchanged.
The force-directions and time-deltas of the

existing switch-points are held constant, while

a search is performed over a newly inserted

variable point, by simulating the trajectory

determined by the new string. The trial is

made four times, once with the new point set

in each of the four switch directions. If a new

trajectory reaches the goal in less time than the

previous best trajectory, then the new

trajectory becomes the best trajectory. At least

one of the force-directions will equal the

previous best trajectory, since one force-

direction matches that of the previous

switching-point in the string, and therefore

represents no force-change.

Inserting the new switch nodes at random

distances between the existing nodes seems to

yield the best results. This is apparently due to

the greater variation available through random
insertion points.

To control the size of the trajectory change

introduced by a varying-point, it is useful to

insert a second switching-point, between the

new varying point and the next switching-

point, that resumes the force application to its

value prior to the new varying point. In this

way, the size of the trajectory change is

controlled by the length of time the new force

is applied. Inserting the second switch-point at

a random distance between the new varying

point and the next switch-point seems to be

advantageous, especially if the distribution is

weighed heavier close to the varying point.

Note that as the density of points increases

in time, the time resolution is effectively

increased, and the length of new force

applications becomes shorter, which creates

smaller trajectory variations. Therefore the

search space automatically becomes more

restricted as the time resolution increases.

Consequendy, the search complexity is

maintained at a constant level by reducing the
search space as the resolution increases.

It is usually beneficial to insert many new

varying points into the control string at once,

and then to test all their permutations together,

since often multiple simultaneous trajectory

changes are very beneficial to minimize the

path yet avoid obstacles. Once again, the

maximum number that can be inserted at any

one time is N due to computational limitations.
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The above process is simply iterated

indefinitely, as more points are added. Points

which do not change the switching direction

from that of the previous point are simply

removed from the control string, C(T). The

result is that more optimal switching times and

directions begin to emerge with greater

precision.
An example switch-point string is shown

below:

Time Time-Delta Control Force
0.0 1.0/_ 0-degrees
0.25 0.25 1.0/_ 90-degrees
0.5 0.25 1.0/_ 0-degrees
0.75 0.25 1.0/_ 90-degrees
1.0 0.25 1.0/_ -90-degrees
1.5 0.5 1.0/_ 90-degrees
1.75 0.25 1.0/_ 180-degrees
2.0 0.25 1.0/_ 0-degrees

A new switch-point is inserted at T=I.6 as

follows:

Time Time-Delta Control Force
0.0 1.0/._ 0-degrees
0.25 0.25 1.0/_ 90-degrees
0.5 0.25 1.0/_ 0-degrees
0.75 0.25 1.0/_ 90-degrees
1.0 0.25 1.0/_ -90-degrees
1.5 0.5 1.0/_ 90-degrees

---> 1.6 0.1 1.0/_ 90-degrees
1.75 0.15 1.0/_ 180-degrees
2.0 0.25 1.0/_ 0-degrees

The new switch-point string can now be
reduced to:

Time Time-Delta Control Force
0.0 1.0/_ 0-degrees
0.25 0.25 1.0/_. 90-degrees
0.5 0.25 1.0/_ 0-degrees
0.75 0.25 1.0/_ 90-degrees
1.0 0.25 1.0/_ -90-degrees
1.6 0.6 1.0/_ 90-degrees
1.75 0.15 1.0/_. 180-degrees
2.0 0.25 1.0/_. 0-degrees

Notice that the difference between the initial

and final strings is that the sixth switch-point

was placed with greater accuracy (ie. to within

0.1 versus 0.25 grid).

Diagram 1 shows the resulting trajectory

from an arbitrary control string. Diagram 2

shows the resulting bifurcations when one new

varying control point is added to the string.

Diagram 3 shows the bifurcations resulting

from the addition of another new varying point

elsewhere in the string. Notice that there are

now 16 potential trajectories. Diagram 4

shows the potential trajectories given 5

varying points. Note that 44 = 256 path

permutations.
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Diagrams 5 through 8 show the resulting

trajectories found for the respective obstacle

fields. The velocity versus time graphs are
also shown. The vehicle was assumed to have

a 1-Kg mass, with a maximum admissible

controlling force of 1-N. Diagram 9 is a

typical convergence plot comparing the rate

with which the solution was improved by the

genetic algorithm to that of the baseline non-

iterative full-resolution search. Note that the

time required to reach a solution of equal

quality was reduced through use of the genetic
method.
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Figure 5 - Trajectory for obstacle field A in x,y.

Conclusion:

We have described a genetic iterative

refinement method that is applicable for multi-

stage coupled problems and that achieves a

solution in less time than would otherwise be

required by performing a single search at the

equivalent resolution for a solution of similar

quality. Further investigation will focus upon

improving and characterizing the nature of the

algorithm's convergence rate in terms of

asymptotic, exponential, or other properties.
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Figure 6 - X-Velocity vs. Time for obstacle field A.
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